
The tool of thought for expert programming

Dyalog™ forWindows

Release Notes

Version: 13.2

Dyalog Limited
email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2013 by Dyalog Limited

All rights reserved.

Version: 13.2

Revision: 22186

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose. Dya-
log Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Introduction 1
Key Features 1
System Requirements 4
Array Editor 5
Performance Improvements 8
Selective Assignment 10
Memory Manager Statistics 10
Enhancements for Icon and Bitmap Objects 11
ListView Enhancements 12
New Button Styles 14
Change to Grid appearance (not XP) 16
Miscellaneous Enhancements 19
Announcements 22

Chapter 2: LanguageReferenceChanges 25
Assignment (Selective): 26
Assignment (Indexed): 28
Memory Manager Statistics: 33

Chapter 3:ObjectReferenceChanges 37
Native Look and Feel 38
ButtonEdit 40
ButtonsAcceptFocus 42
Cue 43
HeaderImageIndex 44
HeaderImageList 44
HighlightHeaders 45
HThumbDrag 45
Masked 46
PageSize 46
ReportBCol 47
ReportImageIndex 47
RowHiddenDepth 47
SelectionBorderWidth 48
SelectionColor 48
SelectionColorAlpha 48
ShowBalloonTip 49
ShowCueWhenFocused 50
VThumbDrag 51

iv

Index 53

Chapter 1: Introduction 1

Chapter 1:

Introduction

Key Features
Dyalog APL Version 13.2 provides the following new features, enhancements and
changes:

General Enhancements and Improvements
l Performance Improvements
l Extensions to Selective Assignment
l Extensions to 2000⌶ (Memory Manager Statistics)
l ⎕FREAD has been extended to allow you to read a vector of components in

a single atomic operation.

New GUI Features
l New ButtonEdit Object. See "ButtonEdit" on page 40
l New CommandLink and Split Button Styles. See "New Button Styles" on

page 14
l Cue Property for the Edit and ButtonEdit Objects
l ShowBalloonTip Method for the SysTrayItem Object
l HeaderImageList, HeaderImageIndex, ReportImageIndex, and ReportBCol

Properties for the ListView Object. See "ListView Enhancements" on page
12

l SelectionColor, SelectionColorAlpha, SelectionBorderWidth, RowHid-
denDepth and HighLightHeaders Properties for the Grid Object

l ButtonsAcceptFocus Property for the ToolControl Object
l PageSize Property for the Form, SubForm and Scroll Objects and

HThumbDrag and VThumbDrag Events for the Form and SubForm Objects
l In previous Versions of Dyalog APL, a manifest file was required to enable
Native Look and Feel. This is no longer needed. See "Native Look and
Feel" on page 38

l Under all supported versions of Windows except XP, the colours of Grid
lines and row and column headers now respects the user's choice of theme if

Chapter 1: Introduction 2

Native Look and Feel is enabled. See "Change to Grid appearance (not XP)"
on page 16

Chapter 1: Introduction 3

Other
l Version 13.2 Unicode Edition includes the Array Editor which allows you

to edit arbitrary arrays, including nested arrays. In the Unicode Edition the
icon in the Session now invokes the Array Editor rather than the

numeric editor which was provided in previous Versions. The Classic Edi-
tion continues to use the numeric editor. See "Array Editor" on page 5

l Version 13.2 includes Conga 2.3 which provides support for Integrated Win-
dows Authentication

Announcements
FromVersion 14.0 the following features will cease to be supported or will change:

l Support for Version 12.1 and Version 13.0. See "Support for Version 12.1
and 13.0" on page 22

l 32-bit component files. See "Deprecation of 32-bit component files" on page
22

l Auxiliary Processors. See "Auxiliary Processors" on page 23
l Default random number generator. See "Random Number Generator" on

page 23

Chapter 1: Introduction 4

System Requirements
Microsoft Windows
Dyalog APL Version 13.2 supports versions ofWindows fromWindows XP up to
and including Windows 8 and Windows Server 2012.

Dyalog APL Version 13.2 is not supported for versions ofWindows prior to Win-
dows XP , such as Windows 2000, Windows 98, Windows 95, Windows ME and
Windows NT4.

Microsoft .Net Interface
Dyalog APL Version 13.2 .Net Interface requires Version 2.x or greater of the Micro-
soft .Net Framework. It does not operate with .Net Version 1.0.

Unix and Linux
For AIX, Version 13.2 requires AIX6.1 or higher, and a POWER5 chip or higher.

Version 13.2 is built on RedHat5, and runs on all recent distributions, including
Ubuntu 12.04 and openSUSE 12.2. Contact Dyalog for other platforms.

Chapter 1: Introduction 5

Array Editor
The Array Editor1 allows you to edit arbitrary arrays. It is invoked by either:

l Clicking the icon in the Session toolbar when the mouse pointer is over
the name of a suitable variable.

l Calling the User Command]aedit, specifying the name of a suitable var-
iable as its argument.

l Calling it directly via ⎕NA

The Array Editor draws data using a format that is similar to the output of the
DISPLAY function. For example:

1Array Editor Version 1 Release 1 © Copyright davidliebtag.com 2012, 2013

Chapter 1: Introduction 6

Documentation
Full documentation for the Array Editor, including a list of the keystrokes it uses, is
available from the Help menu in the Array Editor's window.

Supported Arrays
The Array Editor supports arrays that consist solely of characters and/or numbers.
You may not use it to edit an array that contains an object reference or a ⎕OR.

Reject unsupported data
The way that the Arrays Editor reacts to unsupported arrays is determined by the
value of the Reject unsupported data option which is accessed by the
Options/Reject unsupported data menu item on the Array Editor menubar.

If this is set to true (the default), and you try to edit an array containing an object ref-
erence, the Array Editor will refuse the start and the system will generate an error mes-
sage.

⎕SE.NumEd.numed: Unexpected error in array editor:
DOMAIN ERROR Argument contained data that is neither simple or

nested.

If this option is cleared, the Array editor will start but you will not be able to do any-
thing. It is therefore advisable that you leave this option set.

Notes
l The Array Editor is supplied only with Unicode Editions of Dyalog

APL/W. Please visit www.davidliebtag.com for details about availability
and support for Classic Editions of Dyalog APL/W.

l Namespaces are not supported.
l Internal representations returned by ⎕OR are not supported.
l Only one instance of the Array Editor may be executed at a time.
l All calls to interpreter primitives use a value of 3 for ⎕ML.
l Negative numbers must be represented using high minus signs. For example,

¯3 not -3.

Chapter 1: Introduction 7

Implementation
The Array Editor is implemented by a DLL named dlaedit.dll (32-bit) or
dlaedit64.dll (64-bit).

The DLL exports two functions: DyalogEditArray and
DyalogEditArrayTitle. The latter is used when you click the the icon in
the Session toolbar (via the APL function ⎕SE.NumEd.numed) and by the User
Command]aedit

Calling the Array Editor Directly
If you wish to use the Array Editor directly, you may do so as follows using ⎕NA1.

For both DyalogEditArray and DyalogEditArrayTitle the first argument
is the array to be edited, while the second argument is a place holder and should
always be 0

For DyalogEditArrayTitle the 3rd argument is a character vector whose con-
tents are displayed in the caption of the array editor window.

The result is the newly altered array.

Examples
⎕NA'dlaedit.dll|DyalogEditArray <pp >pp' ⍝ 32-bit
⎕NA'dlaedit.dll|DyalogEditArrayTitle <pp >pp <0C2[]' ⍝ 32-bit

⎕NA'dlaedit64.dll|DyalogEditArray <pp >pp' ⍝ 64-bit
⎕NA'dlaedit64.dll|DyalogEditArrayTitle <pp >pp <0C2[]'⍝ 64-bit

New←DyalogEditArray Old 0
New←DyalogEditArrayTitle Old 0 Name

1Note that these are not standard ⎕NA calls, but rather use an extension to ⎕NA, called Direct
Workspace Access. Dyalog does not intend to make this feature generally available at present: if
you are interested in this feature please contact sales@dyalog.com.

Chapter 1: Introduction 8

Performance Improvements
Reduction Operator
The performance of certain reductions on non-vector numeric arrays has been
improved. +/, ×/, ⌈/, and ⌊/ on floating point numbers are faster by a factor of 6
while +⌿, ×⌿, ⌈⌿, and ⌊⌿ are faster by a factor of 2. In addition, ⌈/ and ⌊/ are faster
by the same factors on other numeric types, and likewise ⌈⌿ and ⌊⌿.

Scan Operator
The time taken for ≤\, >\, ≥\, ⍱\, and ⍲\ has reduced from order n2 to order n,
where n is the length of the argument.

Miscellaneous
The performance of the following expressions, which mostly involve operations on
Boolean arrays, has been improved. The degree of performance improvement is indi-
cated in the column labelled Factor.

The meaning of the symbols used in the expressions is as follows:

n integer scalar
i integer array
b Boolean array
x array

Expression Factor Comments

n|i 19-34 When n is a power of 2.

2⊥b 17-21

⌽b and ⊖b 2-93

(n⍴2)⊤i 19-21

x[b;...;] 2-17

⍳n 1-2

⌽x 4-230

?i⍴2 2-30 when ⎕IO←0

b/⍳⍴b and b/⍳n 3.5

Chapter 1: Introduction 9

Search and Replace
⎕R and ⎕S operate significantly faster than before for simple searches – essentially,
those without regular expressions, function transformations, options other than Mode
or nested input documents.

Pick in Selective Assignment
The performance Pick (⊃) in selective assignment expressions is substantially faster
than before.

Stranding of Arrays
The performance of the stranding of named arrays, as in expressions such as:

A B C D E F

has been improved. The time taken has been reduced from being an order of n2 to an
order of n, where n is the number of names in the strand.

Account Name
The value of ⎕AN is now cached in the workspace rather than being obtained dynam-
ically every time it is referenced. Since ⎕AN is used internally whenever a function is
fixed applications which fix a very large number of functions will benefit from this
caching.

Chapter 1: Introduction 10

Selective Assignment
Selective Assignment has been extended so that:

The Each Operator may now be used in selection expressions.

The syntax of selective assignment expressions is extended from

(EXP X)←Y

to

(EXP X)[I]←Y ⍝ Case 1
(EXP X[I])←Y ⍝ Case 2

where:

l EXP is a selection expression using primitive functions from the table "Func-
tions for Selective Assignment" on page 26

l X is the name of a variable
l Y is an array of items that replace the selected items in X.
l [I] is square-bracket (simple, choose, reach) indexing.

These enhancements bring Dyalog into line with mainframe IBM®APL2®.

For further details and examples, see "Assignment (Selective):" on page 26

Memory Manager Statistics
Function 2000⌶ (Memory Manager Statistics) has been extended to provide:

1. The ability to determine an application's peak memory usage so that its mini-
mum value forMAXWS can be determined.

2. The ability to set an upper limit on the amount of workspace actually com-
mitted by the Operating System to prevent code which grabs as much work-
space as it can from skewing the peak usage result.

3. The ability to set a lower limit on the workspace allocation to avoid repeat-
edly committing and releasing memory to the Operating System when mem-
ory usage is fluctuating.

For further details and examples, see "Memory Manager Statistics:" on page 33

Chapter 1: Introduction 11

Enhancements for Icon and Bitmap Objects
Bitmap and Icon objects can now be created from files of type GIF, JPG and PNG in
addition to the file types previously supported (BMP and ICO respectively). How-
ever, they may only be written (using the FileWrite method) to BMP and ICO files as
before.

The size of the image displayed by an Icon object was previously determined by its
Style property which was either 'Small' (16x16) or 'Large' (32x32). The image
size is now overridden by the value of the Size property which may contain any
appropriate value. Note that a ICO file can contain images of multiple sizes.

The Icon object now supports 32-bit icons (24-bit images with an 8-bit alpha chan-
nel) using the CBits property instead of the Bits, CMap and Mask properties. The Bit-
map object also supports the same type of transparent images.

The Masked property of the ImageList object has been extended to support high-
colour transparent images.

Chapter 1: Introduction 12

ListView Enhancements
The ListView object may now display icons against column titles and items in
Report View.

In Report View, the HeaderImageList property identifies the ImageList object con-
taining the icons, and the HeaderImageIndex property specifies which icons from this
ImageList are to be displayed in which column headings.

In the example shown below, the ImageList identified by HeaderImageList contains
4 icons for the 4 different times of day shown in the column headings and
HeaderImageIndex is ¯2 0 1 2 3 4. The value ¯2 specifies the standard sort
down symbol.

In Report View, the ReportImageIndex property now overrides the ImageIndex prop-
erty and additionally specifies which icons, from the ImageList specified by ImageL-
istObj, are to be displayed against each item in the matrix specified by ReportInfo.

ReportImageIndex is a matrix whose first column specifies the indices of the icons to
be displayed against the Items of the ListView, and whose subsequent columns spec-
ify the indices of the icons to be displayed against the elements of ReportInfo.

i.e. if non-scalar, (⍴ReportImageIndex)←→(0 1+⍴ReportInfo)

In the example shown below, the ImageList associated with ImageListObj contains
icons for each country's flag, followed by icons for the different types of weather.

ReportImageIndex[;1] is ⍳⍴COUNTRIES

ReportImageIndex[;2] is 0

ReportImageIndex[3 4 5 6;] is a set of integers (>⍳⍴COUNTRIES) which
index the weather icons

Chapter 1: Introduction 13

The ReportBCol property optionally specifies the background colours for each ele-
ment in Report View. Its first column refers to the Items themselves, and subsequent
columns to the elements of ReportInfo.

i.e. if non-scalar, (⍴ReportBCol)←→(0 1+⍴ReportInfo)

Chapter 1: Introduction 14

New Button Styles
There are two new Styles for the Button Object, namely 'CommandLink' and
'Split'. These apply only to Windows Vista and later and require Native Look
and Feel. See "Native Look and Feel" on page 38. Otherwise the use of these Styles
will produce a Button with Style 'Push'.

CommandLink Style
The CommandLink button has an icon displayed to the left of its Caption.

'F'⎕WC'Form' 'CommandLink Button'
F.clb'⎕WC'Button' 'Visit Us'('Style' 'CommandLink')

In addition to the caption, additional text may be defined by its Note property. If pro-
vided, this is displayed below the Caption.

F.clb.Size←80 200
F.clb.Note←'www.dyalog.com'

Chapter 1: Introduction 15

The Elevated property is a Boolean scalar which when set to 1, changes the icon on
the CommandLink button. This is intended to convey to the user that the action asso-
ciated with the Button requires Elevation, a feature ofUser Account Control in Win-
dows 7.

F.clb.Elevated←1

Split Style
The Split Button has a drop-down button, similar to that provided by a Combo
object. The user can interact with the Button by clicking it, which generates a Select
Event as before, or by clicking the drop-down.which generates a DropDown Event. It
is up to the programmer to handle the DropDown Event as appropriate.

'F'⎕WC'Form' 'Split Button'
'F.sb'⎕WC'Button' 'Select File'('Style' 'Split')

Chapter 1: Introduction 16

Change to Grid appearance (not XP)
In order to make it more consistent with current Windows conventions, the default
appearance of the Grid now respects the user's chosen theme when Native Look and
Feel is enabled. In particular, the default colour of the grid lines and the shading of
the row and column headings is determined by the user's theme.

This change applies to all supported Versions ofWindows exceptWindows XP.

Windows 8 default theme, Native Look and Feel NOT enabled.

Windows 8 default Theme, Native Look and Feel enabled.

Chapter 1: Introduction 17

The change is more noticeable when a more colourful Theme is in use. The following
pictures illustrate a Grid with and without Native Look and Feel when a Windows 8
High Contrast Theme is used.

Windows 8 High Contrast Theme, Native Look and Feel NOT enabled.

Windows 8 High Contrast Theme, Native Look and Feel enabled.

Chapter 1: Introduction 18

GridFCol, RowTitleFCol and ColTitleFCol
If Native Look and Feel is enabled, the values of the GridFCol, RowTitleFCol and
ColTitleFCol properties are ignored in deference to the colours defined by the chosen
theme. You may however override the theme derived colours of the grid lines using
GridLineFCol.

Chapter 1: Introduction 19

Miscellaneous Enhancements
Dyalog APL Version 13.2 provides the following miscellaneous enhancements and
changes:

⎕FLIB Limitation Removed
Component files that are exclusively tied were not previously reported by ⎕FLIB. In
Version 13.2 they are included in the result.

APL_FHIST_TIE
FromVersion 13.2 onwards, support for the APL_FHIST_TIE parameter has been
removed. Component file tie time is not recorded and ⎕FHIST always reports 0 for
user ID and time in the 4th row of its result.

⎕PROFILE
⎕PROFILE'data' and ⎕PROFILE'tree' have been enhanced to take an
optional left argument specifying which columns of data to return.

Workspace Save
0 ⎕SAVE wsid no longer fails with DOMAIN ERROR if there are threads running
or Edit/Trace windows open. These restrictions continue to apply to monadic ⎕SAVE
and)SAVE.

)SAVE and ⎕SAVE now insist that you explicitly specify a filename. Previously if
you specified just the name of a directory, the workspace was saved with the name
.DWS.

Keyboard Shortcuts
Windows allows users to control the visibility of keyboard shortcuts.

UnderWindows XP this is done from the Display Properties dialog box. Select the
Appearance tab, then click the Effects button. Then select or clear the option labelled
Hide underlined letters for keyboard navigation until I press the Alt key.

Chapter 1: Introduction 20

In Windows 7, open Control Panel / Ease of Access Center / Make the Keyboard
easier to use.The option is labelled Underline keyboard shortcuts and access keys

The Dyalog APL GUI now honours this option. This means that the underscores in
the captions of certain objects, including Label, MenuItem and Button objects, may
or may not be shown until the user presses the Alt key.

Note that the actual behaviour obtained by the option is controlled by Windows
and not by Dyalog.

SessionOnTop Parameter
In Classic Dyalog mode, it is now possible to specify whether or not the Session win-
dow may appear on top of Edit and Trace windows. To enable this setting, check the
option box as shown in the picture below.

Find Objects Tool
The Find Objects dialog box now saves all your option settings between invocations
and between APL sessions.

Chapter 1: Introduction 21

MakeGIF and MakePNG Methods
In Version 13.2, these methods are implemented using GDI+. This means that
MakeGIF now generates compressed GIF files. In previous versions it generated
uncompressed GIFs.

Find/Replace Tool
In previous versions of Dyalog APL the Find/Replace window was dockable. How-
ever, the resulting Window was in general unusable, with many of the fields and but-
tons not visible. In Version 13.2 the Find/Replace window is no longer dockable.

Chapter 1: Introduction 22

Announcements
Support for Version 12.1 and 13.0
Version 12.1 and Version 13.0 will continue to be supported until Version 14.0 is
released, at which point both these Versions will cease to be supported.

Deprecation of 32-bit component files
Since Version 10.1, Dyalog APL has supported large span (64-bit) component files,
and since Version 12.0 ⎕FCREATE has created these by default. Existing small span
(32-bit) component files are still supported and 32-bit component files may still be
created if suitable options are specified, but they have restrictions which 64-bit files
do not, including:

l The maximum file size is 4GB.
l The files are not fully architecture-independent meaning that there are lim-

itations sharing them between, for example, Windows or Linux and AIX
machines.

l Components may not contain Unicode data.

As announced on the Release of Version 13.0, Dyalog intends to withdraw support
for 32-bit component files in the next Release which will be Version 14.0.

If you have any existing 32-bit component files, or applications which create and/or
use them, Dyalog recommends that you prepare for this in the following ways:

l Ensure that Dyalog is not started with the command-line option -F32. This
option sets the default component file type which is created to 32-bit.

l Ensure that no ⎕FCREATE within your applications explicitly specifies that
32-bit files are to be created.

l Make plans to convert any existing 32-bit component files to 64-bit using
⎕FCOPY. ⎕FCOPYwill create a 64-bit copy even if the file being copied is
32-bit. You may use the new user command]Fto64 to locate existing
small span files and convert them to the 64-bit architecture. Ths user com-
mand is included with Version 13.2, and can be downloaded for earlier ver-
sions as well (users of Version 13.1 can use the]UUPDATE command to
download updated user commands).

Note: in order to allow the use of legacy files retrieved from backups etc., Dyalog
will continue to provide read-only support for 32-bit files in Version 14.0, and in sub-
sequent releases for a minimum of 10 years.

Chapter 1: Introduction 23

Auxiliary Processors
It is intended that in the next major release, Version 14.0, all Dyalog-supplied Aux-
iliary Processors, namely qfsck, strand and xutils will be removed from the
product, although the interfaces for user-written Auxiliary Processors will continue
to be supported. Instead Dyalog will supply equivalent DLLs/shared libararies (oper-
ating system dependent).

Random Number Generator
The Version 13.0 random number generator, that is used by Roll and Deal, is based
upon the Lehmer linear congruential generator. This has several limitations, most
notably that it has a limited value range of (2*31). Mindful of the need to support
applications that rely on the current mechanism, and the ability to generate specific
repeatable random series using ⎕RL, Dyalog provided two additional random
number generators in Version 13.1. Both the new algorithms support 64-bit values
and both may be considered to be an improvement (in terms of randomness) over the
existing mechanism. The new mechanisms were:

l Mersenne Twister random number generator. This algorithm produces 64-bit
values with good distribution.

l Operating System random number generator. Under Windows APL this uses
the CryptGenRandom() function. Under Unix/Linux it uses /dev/urandom
[3].

You may select the random number generator in use using 16807⌶. This allows you
to switch dynamically between the different algorithms if required.

In Versions 13.1 and 13.2 the default random number generator in a CLEAR WS is 0
(Lehmer linear congruential). The default will be changed to 1 (Mersenne Twister)
in the next release of Dyalog APL (Version 14.0). In preparation for this change,
avoid writing code which assumes that ⎕RL will be a scalar integer.

Note: the change to the default will only impact applications if they are rebuilt from
a clear workspace; saved workspaces will be unaffected.

Chapter 1: Introduction 24

Chapter 2: Language Reference Changes 25

Chapter 2:

Language Reference Changes

Chapter 2: Language Reference Changes 26

Assignment (Selective): (EXP X)←Y

X is the name of a variable in the workspace, possibly modified by the indexing func-
tion (EXP X[I])←Y, see."Assignment (Indexed):" on page 28. EXP is an expres-
sion that selects elements of X. Y is an array expression. The result of the expression
Y is allocated to the elements of X selected by EXP.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [] and with the Each operator ¨.

Functions for Selective Assignment
↑ Take
↓ Drop
, Ravel
⌽ Reverse, Rotate
⍴ Reshape
⊃ Disclose, Pick
⍉ Transpose (Monadic and Dyadic)
/ Replicate
\ Expand
⌷ Index
∊ Enlist (⎕ML≥1)

Note: Mix and Split (monadic ↑ and ↓), Type (monadic ∊ when ⎕ML<1) and Mem-
bership (dyadic ∊) may not be used in the selection expression.

Examples
A←'HELLO'
((A∊'AEIOU')/A)←'*'

A
H*LL*

Z←3 4⍴⍳12
(5↑,Z)←0

Z
0 0 0 0
0 6 7 8
9 10 11 12

Chapter 2: Language Reference Changes 27

MAT←3 3⍴⍳9
(1 1⍉MAT)←0

MAT
0 2 3
4 0 6
7 8 0

⎕ML←1⍝ so ∊ is Enlist
names←'Andy' 'Karen' 'Liam'
(('a'=∊names)/∊names)←'*'
names

Andy K*ren Li*m

Each Operator
The functions listed in the table above may also be used with the Each Operator ¨.

Examples
A←'HELLO' 'WORLD'
(2↑¨A)←'*'
A

**LLO **RLD

A←'HELLO' 'WORLD'
((A='O')/¨A)←'*'
A

HELL* W*RLD

A←'HELLO' 'WORLD'
((A∊¨⊂'LO')/¨A)←'*'
A

HE*** W*R*D

Bracket Indexing
Bracket indexing may also be applied to the expression on the left of the assignment
arrow.

Examples
MAT←4 3⍴'Hello' 'World'
(¯2↑¨MAT[;1 3])←'$'
MAT

Hel$$ World Hel$$
Wor$$ Hello Wor$$
Hel$$ World Hel$$
Wor$$ Hello Wor$$

Chapter 2: Language Reference Changes 28

Assignment (Indexed): {R}←X[I]←Y
Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]← is treated as the function for descriptive purposes.

Ymay be any array. Xmay be the name of any array or a selection from a named
array (EXP X)[I]←Y, see "Assignment (Selective):" on page 26. Imust be a valid
index specification. The shape of Ymust conform with the shape (implied) of the
indexed structure defined by I. If Y is a scalar or a unit vector it will be extended to
conform. A side effect of Indexed Assignment is to change the value of the indexed
elements of X.

R is the value of Y. If the result is not explicitly assigned or used it is suppressed.

⎕IO is an implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment
For vector X, I is a simple integer array whose items are from the set ⍳⍴R. Elements
of X identified by index positions I are replaced by corresponding elements of Y.

Examples
+A←⍳5

1 2 3 4 5

A[2 3]←10 ⋄ A
1 10 10 4 5

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]←100 101 ⋄ A
1 101 10 4 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Chapter 2: Language Reference Changes 29

Examples
+B←2 3⍴'REDSUN'

RED
SUN

B[2;2]←'O' ⋄ B
RED
SON

For higher-order array X, I is a series of simple integer arrays with adjacent arrays sep-
arated by a single semicolon character (;). Each array selects indices from an axis of
X taken in row-major order.

Examples
C

11 12 13
14 15 16

21 22 23
24 25 26

C[1;1;3]←103 ⋄ C
11 12 103
14 15 16

21 22 23
24 25 26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector ⍳(⍴X)[K] is implied:

C[;1;2 3]←2 2⍴112 113 122 123 ⋄ C
11 112 113
14 15 16

21 122 123
24 25 26

C[;;]←0 ⋄ C
0 0 0
0 0 0

0 0 0
0 0 0

Chapter 2: Language Reference Changes 30

Choose Indexed Assignment
The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples
C

11 12 13 14
21 22 23 24

C[⊂1 1]←101 ⋄ C
101 12 13 14
21 22 23 24

C[(1 2) (2 3)]←102 203 ⋄ C
101 102 13 14
21 22 203 24

C[2 2⍴(1 3)(2 4)(2 1)(1 4)]←2 2⍴103 204 201 104 ⋄ C
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10

S[⊂⍳0]←⊂'VECTOR' ⋄ S
VECTOR

S[⊂⍳0]←5 ⋄ S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (⍳) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24

⍳⍴C
1 1 1 2 1 3 1 4
2 1 2 2 2 3 2 4

C[1 1⍉⍳⍴C]←1 2 ⋄ C
1 12 13 14

21 2 23 24

C[2 ¯1↑⍳⍴C]←99 ⋄ C
1 12 13 99

21 2 23 99

Chapter 2: Language Reference Changes 31

Reach Indexed Assignment
The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or sca-
lars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D←(2 3⍴⍳6)(2 2⍴'SMITH' 'JONES' 'SAM' 'BILL')

D
1 2 3 SMITH JONES
4 5 6 SAM BILL

≡J←⊂2 (1 2)
¯3

D[J]←⊂'WILLIAMS' ⋄ D
1 2 3 SMITH WILLIAMS
4 5 6 SAM BILL

D[(1 (1 1))(2 (2 2) 1)]←10 'W' ⋄ D
10 2 3 SMITH WILLIAMS
4 5 6 SAM WILL

E
GREEN YELLOW RED

E[⊂2 1]←'M' ⋄ E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

⊂2 1 ←→ ⊂(⊂2),(⊂1)

Note that for any array A, A[⊂⍬] represents a scalar quantity, which is the whole of
A, so:

A←5⍴0
A

0 0 0 0 0
A[⊂⍬]←1
A

1

Chapter 2: Language Reference Changes 32

Combined Indexed and Selective Assignment
Instead of X being a name, it may be a selection from a named array, and the state-
ment is of the form (EXP X)[I]←Y.

MAT←4 3⍴'Hello' 'World'
(2↑¨MAT)[1 2;]←'#'
MAT

##llo ##rld ##llo
##rld ##llo ##rld
Hello World Hello
World Hello World

MAT←4 3⍴'Hello' 'World'
⎕ML←1 ⍝ ∊ is Enlist

(∊MAT)[2×⍳⌊0.5×⍴∊MAT]←'#'
MAT

H#l#o #o#l# H#l#o
#o#l# H#l#o #o#l#
H#l#o #o#l# H#l#o
#o#l# H#l#o #o#l#

Chapter 2: Language Reference Changes 33

Memory Manager Statistics: R←{X}(2000⌶)Y
This function returns information about the state of the workspace and provides a
means to reset certain statistics and to control workspace allocation. This I-Beam is
provided for performance tuning and is VERY LIKELY to change in the next release.

Y is a simple integer scalar or vector containing values listed in the table below.

If X is omitted, the result R is an array with the same structure as Y, but with values in
Y replaced by the following statistics. For any value in Y outside those listed below,
the result is undefined.

Value Description

0 Workspace available (a "quick" ⎕WA)

1 Workspace used

2 Number of compactions since the workspace was loaded

3 Number of garbage collections that found garbage

4 Current number of garbage pockets in the workspace

12 Sediment size

13 Current workspace allocation, i.e. the amount of memory that is
actually being used

14
Workspace allocation high-water mark, i.e. the maximum amount of
memory that has been used since the workspace was loaded or
since this count was reset

15 Limit on minimum workspace allocation

16 Limit on maximum workspace allocation

Note that while all other operations are relatively fast, the operation to count the
number of garbage pockets (4) may take a noticeable amount of time, depending
upon the size and state of the workspace.

Examples
2000⌶0

55414796
2000⌶0 1 2 3 4 12 13 14 15 16

55414796 10121204 5 0 0 2120524 34489168 34489168 0 65536000

Chapter 2: Language Reference Changes 34

If X is specified,it must be either a simple integer scalar, or a vector of the same length
as Y, and the result R is ⍬. In this case, the value in Y specifies the item to be set and
and X its new value according to the table below.

Value Description

2 0 resets the compaction count; no other values allowed

3 0 resets the count of garbage collections that found garbage; no
other values allowed

14 0 resets the workspace allocation high-water mark; no other values
allowed

15 Sets the minimum workspace allocation to the corresponding value
in X; must be between 0 and the current workspace allocation

16
Sets the maximum workspace allocation to the corresponding value
in X; 0 implies MAXWS otherwise must be between the current
workspace allocation and MAXWS.

Notes:
l Note that the workspace allocation high-water mark indicates a minimum

value forMAXWS.
l Limitting the maximum workspace allocation can be used to prevent code

which grabs as much workspace as it can from skewing the peak usage
result.

l Limitting the minimum workspace allocation can avoid repeatedly com-
mitting and releasing memory to the Operating System when memory usage
is fluctuating.

Examples
2000⌶2 3

6 0 33216252
0 (2000⌶)2 3 14 ⍝ Reset compaction count

2000⌶2 3
0 0

30000000 40000000(2000⌶)15 16 ⍝ Restrict min/max ws

(2000⌶)15 16
30000000 40000000

0 (2000⌶)15 16 ⍝ Reset min/max ws

(2000⌶)15 16
0 65536000

Chapter 2: Language Reference Changes 35

(2000⌶)13 14 ⍝ Current, peak WS allocation
4072532 4072532

a←10e6⍴'x' ⍝ Increase WS allocation

(2000⌶)13 14 ⍝ Current, peak WS allocation
15108580 15108580

⎕ex 'a' ⋄ {}⎕wa ⍝ Decrease current WS allocation

(2000⌶)13 14 ⍝ Current, peak WS allocation
1962856 15108580

0 (2000⌶) 14 ⍝ Reset High-water mark

(2000⌶)13 14 ⍝ Current, peak WS allocation
1962856 1962856

Chapter 2: Language Reference Changes 36

Chapter 3: Object Reference Changes 37

Chapter 3:

Object Reference Changes

Chapter 3: Object Reference Changes 38

Native Look and Feel
Windows Native Look and Feel is an optional feature ofWindows fromWindows
XP onwards.

IfNative Look and Feel is enabled, user-interface controls such as Buttons take on a
different appearance and certain controls (such as the ListView) provide enhanced
features.

The following pictures illustrate the appearance of a simple Button created with and
without Native Look and Feel underWindows XP and Windows 7.

Chapter 3: Object Reference Changes 39

Dyalog Session
During development, both the Dyalog Session and the Dyalog APL GUI will display
native style buttons, combo boxes, and other GUI components ifNative Look and
Feel is enabled. The option is provided in the General tab of the Configuration
dialog.

Applications
There are two ways to enable Native Look and Feel in end-user applications.

If you use the File/Export… menu item on the Session MenuBar to create a bound
executable, an OLE Server (in-process or out-of-process), an ActiveX Control or a
.Net Assembly, check the option box labelled Enable Native Look and Feel in the
create bound file dialog box. See User Guide.

If not, set the XPLookandFeel parameter to 1, when you run the program. For exam-
ple:

dyalogrt.exe XPLookAndFeel=1 myws.dws

Note that to have effect,Native Look and Feelmust also be enabled at the Win-
dows level.

Chapter 3: Object Reference Changes 40

ButtonEdit Object
Purpose: Allows user to enter or edit data.

Parents ActiveXControl, Form, Group, PropertyPage, SubForm

Children Circle, Ellipse, Font, ImageList, Marker, Poly, Rect, Text, Timer

Properties Type, Text, Posn, Size, Style, Coord, Align, Border, Justify, Active,
Visible, Event, ImageListObj, Sizeable, Dragable, FontObj, FCol,
BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, FieldType, MaxLength, Decimals,
Password, ValidIfEmpty, ReadOnly, FormatString, Changed, Value,
Translate, Accelerator, AcceptFiles, KeepOnClose, Transparent,
ImageIndex, Redraw, TabIndex, Cue, ShowCueWhenFocused,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Select,
BadValue, KeyError, Change, DropDown

Description

The ButtonEdit object combines a single-line input field with a customisable button.
It provides the same user and programmer interfaces as an Edit object (Style
'Single').

The appearance of the button, which is displayed to the right of the input field, is
determined by the ImageListObj property. When clicked, the object generates a Drop-
Down event. There is no default processing for this event; it is up to the programmer
to take the appropriate action via a callback function.

Chapter 3: Object Reference Changes 41

The following picture illustrates two ButtonEdit objects

∇ Example;BK;White
[1] 'F'⎕WC'Form' 'ButtonEdit'
[2] 'F.IL1'⎕WC'ImageList'('Size' 16 16)('Masked' 1)
[3] 'F.IL1.Time'⎕WC'Icon' 'c:\MadCap13.2\ICO\Time.ico'
[4] 'F.BE1'⎕WC'ButtonEdit' ''(30 20)(⍬ 160)
[5] F.BE1.(Cue ShowCueWhenFocused)←'Enter data' 1
[6] F.BE1.(ImageListObj ImageIndex)←F.IL1 1
[7]
[8] 'F.fnt'⎕WC'Font' 'APL385 Unicode' 16
[9] BK←16 16⍴256⊥White←255 255 255
[10] 'F.Rotate'⎕WC'Bitmap'('CBits'BK)('MaskCol'White)
[11] 'F.Rotate.'⎕WC'Text' '⌽'(0 3)('FontObj'F.fnt)
[12] BK←F.Rotate.CBits
[13] 'F.IL1.'⎕WC'BitMap'('CBits'BK)('MaskCol'White)
[14] 'F.BE2'⎕WC'ButtonEdit' 'Hello World'(100 20)(⍬
160)
[15] F.BE2.(ImageListObj ImageIndex)←F.IL1 2
[16] F.BE2.onDropDown←'Rotate'

∇

∇ Rotate msg
[1] (⊃msg).Text←⌽(⊃msg).Text

∇

Chapter 3: Object Reference Changes 42

ButtonsAcceptFocus Property
Applies To: ToolControl

Description

This is a Boolean property that determines how the Tab key and other cursor move-
ment keys are handled by a ToolControl object.

If ButtonsAcceptFocus is 0 (the default), when the user presses Tab or Shift+Tab to
switch the input focus from another object to the ToolControl, the first ToolButton in
the ToolControl receives the input focus and is highlighted. Pressing Tab or
Shift+Tab again causes the input focus to move to another control. The cursor move-
ment keys have no effect.

If ButtonsAcceptFocus is 1, when the user presses Tab or Shift+Tab to switch the
input focus from another object to the ToolControl, the first or last ToolButton in the
ToolControl receives the input focus and is highlighted. Note that the behaviour of
Shift+Tab in this case is different. Pressing Tab or Shift+Tab again causes the input
focus to move to another control, although if there is no other control to accept the
input focus, it moves to the first or last ToolButton as appropriate. Pressing the cursor
movement keys causes the input focus to move from one ToolButton to the next.

Chapter 3: Object Reference Changes 43

Cue Property
Applies To: ButtonEdit, Edit

Description

This property specifies optional text to be displayed when a ButtonEdit or an Edit
object is empty. For an Edit object it applies only if the Style of the Edit object is
'Single'.

Note that this feature only apples if Native Look and Feel (see page 38) is enabled.

The Boolean property ShowCueWhenFocused determines whether or not the cue
should also be displayed once the user has tabbed into or clicked on the input field
(and thus given it the focus).

Example
'F' ⎕WC 'Form' 'Cue Property'
'F.E' ⎕WC 'Edit'
F.E.Cue←'Enter Password'

Chapter 3: Object Reference Changes 44

HeaderImageIndex Property
Applies To: ListView

Description

The HeaderImageIndex property is an integer vector that specifies the images to be
displayed alongside each column heading in a ListView object in Report View. Each
positive element of HeaderImageIndex specifies an index into the ImageList object
specified by the HeaderImageList property. The special values ¯1 and ¯2 specify the
standard Sort Up and Sort Down images respectively.

HeaderImageList Property
Applies To: ListView

Description

The HeaderImageList property specifies the name of or ref to an ImageList object that
contains images to be displayed alongside each column heading in a ListView object
in Report View.

Chapter 3: Object Reference Changes 45

HighlightHeaders Property
Applies To: Grid

Description

The HighlightHeaders property is a Boolean value (default 1) that specifies whether
or not the appropriate row and column titles in a Grid are highlighted corresponding
to the currently selected block of cells.

HThumbDrag Event 442
Applies To: Form, SubForm

Description

If enabled, this event is generated when the user attempts to drag the thumb in a hor-
izontal scrollbar in a Form or SubForm. This event occurs only in a Form or SubForm
whose HScroll property is set to ¯1 and is distinct from the Scroll event that is gen-
erated by a Scroll object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows:

[1] Object ref or character vector

[2] Event 'HThumbDrag' or 442

[3] Position numeric

The value of Position is the new (requested) position of the Thumb. Setting the
action code of this event to ¯1, or returning a 0 from a callback function attached to
it, has no effect.

Chapter 3: Object Reference Changes 46

Masked Property
Applies To: ImageList

Description

The Masked property specifies whether or not the ImageList will contain opaque or
transparent images. It may be 0, 1(the default) or 2.

Masked must be established when the ImageList is created by ⎕WC and may not sub-
sequently be altered. An inappropriate value ofMasked will cause the images to be
drawn incorrectly.

If Masked is 0, the ImageList expects opaque BitMap objects.

If Masked is 1, the ImageList expects low-colour (4-bit or 8-bit) Icon objects whose
transparency is defined by their Mask property.

If Masked is 2, the ImageList expects BitMap or Icon objects whose alpha channel
(the degree of transparency of each pixel) is encoded in their CBits property, along
with the colours.

PageSize Property
Applies To: Form, Scroll, SubForm

Description

For a Form and SubForm, the PageSize property is a 2-element integer vector which
specifies the size of the thumb in the vertical and horizontal scrollbars respectively.

For a Scroll object it is a single integer.

If PageSize is 0 (the default) it specifies the default thumb. Otherwise, PageSize is
expressed in proportion to the corresponding value of Range. For example, if Range
is 1000, setting PageSize to 100 will obtain a thumb which is approximately 10% of
the height or length of the scrollbar.

Chapter 3: Object Reference Changes 47

ReportBCol Property
Applies To: ListView

Description

In Report View, the ReportBCol property is either a scalar or a matrix that specifies
the background colours for each item displayed in a ListView object .

Its first column refers to the Items themselves, and subsequent columns to the ele-
ments of ReportInfo.

i.e. if non-scalar, (⍴ReportBCol)←→(0 1+⍴ReportInfo)

Each element of ReportBCol is either an integer colour value or a 3-element of RGB
colour indices.

ReportImageIndex Property
Applies To: ListView

Description

The ReportImageIndex property is an integer scalar or matrix that specifies the
images to be displayed alongside each item in a ListView object in Report View.

If it is a matrix, its first column specifies the indices of the icons to be displayed
against the Items of the ListView, overriding the icons specified by ImageIndex, and
its subsequent columns specify the indices of the icons to be displayed against the
elements of ReportInfo.

i.e. if non-scalar, (⍴ReportImageIndex)←→(0 1+⍴ReportInfo)

Each element of ReportImageIndex specifies an index into the ImageList object spec-
ified by the ImageListObj property.

RowHiddenDepth Property
Applies To: Grid

Description

The RowHiddenDepth property identifies which rows of a Grid are currently hidden.

Chapter 3: Object Reference Changes 48

SelectionBorderWidth Property
Applies To: Grid

Description

The SelectionBorderWidth property specifies the width of the border that is drawn
around the currently selected block of cells. It is expressed in pixels.

SelectionColor Property
Applies To: Grid

Description

The SelectionColor property specifies the colour used to highlight the currently
selected block of cells and, if HighlightHeaders is 1, the corresponding row and col-
umn headings. See also "SelectionColorAlpha" on page 48.

SelectionColorAlpha Property
Applies To: Grid

Description

The SelectionColorAlpha property is a 2-element integer vector that specifies the
degree of transparency or shade of the colour that is used to highlight the currently
selected block of cells in a Grid. See "SelectionColor" on page 48.

The first element refers to the shade to be used when the Grid has the input focus; the
second to when it doesn't. Each element is an integer in the range 0 (invisibly light)
to 255 (fully dark).

Chapter 3: Object Reference Changes 49

ShowBalloonTip Method 860
Applies To: SysTrayItem

Description

The ShowBalloonTip method displays a BalloonTip in a SysTrayItem object.

The argument to ShowBalloonTip is a 1, 2, 3 or 4-element array as follows:

[1] Title character vector

[2] Text character vector or matrix

[3] Icon Integer scalar, a character vector or a ref

[4] Flags Integer

The Title parameter is the text to be displayed in the BalloonTip title (maximum
length 64).

The Text parameter is the text (maximum length 256) to be displayed in the Bal-
loonTip. If omitted or empty, the BalloonTip is not displayed.

If the Icon parameter is an integer, it means:

0 No icon

1 Information icon

2 Warning icon

3 Error icon

Other values represent the name or a ref to an Icon object. If the Icon parameter is
omitted, no icon is displayed in the BalloonTip.

If the Icon parameter specifies a large Icon object (32 x 32 bits) the Flags parameter
must be 32. Otherwise this parameter is not used.

Windows XP
UnderWindows XP, only small (16x16) icons are supported. Furthermore, the Bal-
loonTip uses the icon associated with the SysTrayItem itself regardless of the custom
icon specified by ShowBalloonTip. However, the following code provides a work-
around, which is to switch the icon for the SysTrayItem itself to the desired icon tem-
porarily, just for the invocation of the ShowBalloonTip method.

Chapter 3: Object Reference Changes 50

Example (XP)
∇ XPBalloonTip;tmpIcon;text;title

[1] 's'⎕WC'SysTrayItem' ⍝ default (APL) icon
[2] 'star'⎕WC'Icon'('Shell32.dll' ¯43)
[3] tmpIcon←s.IconObj
[4] s.IconObj←star
[5] text←'Hello World'
[6] title←'Custom BalloonTip icon under XP'
[7] s.ShowBalloonTip title text star
[8] s.IconObj←tmpIcon

∇

ShowCueWhenFocused Property
Applies To: ButtonEdit, Edit

Description

This Boolean property specifies whether or not the text specified by the property
should be displayed once the user has tabbed into or clicked on the empty input field
(and thus given it the focus). For an Edit object it applies only if the Style of the Edit
obect is 'Single'.

Chapter 3: Object Reference Changes 51

VThumbDrag Event 441
Applies To: Form, SubForm

Description

If enabled, this event is generated when the user attempts to drag the thumb in a ver-
tical scrollbar in a Form or SubForm. This event occurs only in a Form or SubForm
whose HScroll property is set to ¯1 and is distinct from the Scroll event that is gen-
erated by a Scroll object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows:

[1] Object ref or character vector

[2] Event 'VThumbDrag' or 441

[3] Position numeric

The value of Position is the new (requested) position of the Thumb. Setting the
action code of this event to ¯1, or returning a 0 from a callback function attached to
it, has no effect.

Chapter 3: Object Reference Changes 52

Index 53

Index

A

Account 9
aedit User Command 5
Array Editor 3, 5
array separator 28
assignment

indexed 28
selective 26

B

ButtonEdit 40
ButtonsAcceptFocus 42

C

choose indexed assignment 30
Cue 43

E

Events
HThumbDrag 45
VThumbDrag 51

F

find and replace dialogs 21
Find Objects Tool 20
Fto64 User Command 22

H

HeaderImageIndex 44
HeaderImageList 44
HighlightHeaders 45
HThumbDrag 45

I

i-beam
memory manager statistics 33

indexed assignment 28

K

Key Features 1

M

MakeGIF method 21
MakePNG method 21
Masked 46
MAXWS parameter 10, 34
memory manager statistics 33
Methods

ShowBalloonTip 49
Miscellaneous Enhancements 19

N

Native Look and Feel 38

O

Objects
ButtonEdit 40

P

PageSize 46
Properties

ButtonsAcceptFocus 42
Cue 43
HeaderImageIndex 44
HeaderImageList 44
HighlightHeaders 45
Masked 46
PageSize 46
ReportBCol 47
ReportImageIndex 47
RowHiddenDepth 47
SelectionBorderWidth 48

Index 54

SelectionColor 48
SelectionColorAlpha 48
ShowCueWhenFocused 50

R

reach indexed assignment 31
ReportBCol 47
ReportImageIndex 47
RowHiddenDepth 47

S

SelectionBorderWidth 48
SelectionColor 48
SelectionColorAlpha 48
selective assignment 26
SessionOnTop parameter 20
ShowBalloonTip 49
ShowCueWhenFocused 50
simple indexed assignment 28
System Requirements 4

U

User Commands
aedit 5
Fto64 22
UUPDATE 22

UUPATE User Command 22

V

VThumbDrag 51

X

XP Look and Feel 38

	Chapter 1: Introduction
	Key Features
	System Requirements
	Array Editor
	Performance Improvements
	Selective Assignment
	Memory Manager Statistics
	Enhancements for Icon and Bitmap Objects
	ListView Enhancements
	New Button Styles
	Change to Grid appearance (not XP)
	Miscellaneous Enhancements
	Announcements

	Chapter 2: Language Reference Changes
	Assignment (Selective):
	Assignment (Indexed):
	Memory Manager Statistics:

	Chapter 3: Object Reference Changes
	Native Look and Feel
	ButtonEdit
	ButtonsAcceptFocus
	Cue
	HeaderImageIndex
	HeaderImageList
	HighlightHeaders
	HThumbDrag
	Masked
	PageSize
	ReportBCol
	ReportImageIndex
	RowHiddenDepth
	SelectionBorderWidth
	SelectionColor
	SelectionColorAlpha
	ShowBalloonTip
	ShowCueWhenFocused
	VThumbDrag

	Index

